Modeling the HIV-1 Intasome: A Prototype View of the Target of Integrase Inhibitors

نویسندگان

  • Zhiqi Yin
  • Robert Craigie
چکیده

The HIV-1 integrase enzyme is essential for integrating the viral DNA into the host chromosome. Infection is aborted in the absence of integration, making integrase an attractive antiviral target. Recently approved inhibitors of integrase bind tightly to integrase assembled in a nucleoprotein complex with the viral DNA ends (intasome), but have only low affinity for free integrase. High-resolution structures of HIV-1 intasomes are therefore required to understand the detailed mechanisms of inhibition and resistance. Although the structure of the HIV-1 intasome has not yet been determined, the structure of the related prototype foamy virus (PFV) intasome was recently solved. A new study [1] exploits the PFV structure to model the HIV-1 intasome. The model provides the most reliable picture to date of the active site region of the HIV-1 intasome and is an important advance in studies of inhibition of this essential HIV-1 enzyme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Progress in HIV-1 integrase inhibitors: A review of their chemical structure diversity

HIV-1 integrase (IN) enzyme, one of the three main enzymes of HIV-1, catalyzed the insertion of the viral DNA into the genome of host cells. Because of the lack of its homologue in human cells and its essential role in HIV-1 replication, IN inhibition represents an attractive therapeutic target for HIV-1 treatment. Since identification of IN as a promising therapeutic target, a major progress h...

متن کامل

Progress in HIV-1 integrase inhibitors: A review of their chemical structure diversity

HIV-1 integrase (IN) enzyme, one of the three main enzymes of HIV-1, catalyzed the insertion of the viral DNA into the genome of host cells. Because of the lack of its homologue in human cells and its essential role in HIV-1 replication, IN inhibition represents an attractive therapeutic target for HIV-1 treatment. Since identification of IN as a promising therapeutic target, a major progress h...

متن کامل

Selectivity for strand-transfer over 3′-processing and susceptibility to clinical resistance of HIV-1 integrase inhibitors are driven by key enzyme–DNA interactions in the active site

Integrase strand transfer inhibitors (INSTIs) are highly effective against HIV infections. Co-crystal structures of the prototype foamy virus intasome have shown that all three FDA-approved drugs, raltegravir (RAL), elvitegravir and dolutegravir (DTG), act as interfacial inhibitors during the strand transfer (ST) integration step. However, these structures give only a partial sense for the limi...

متن کامل

Non-Enzymatic Functions of Retroviral Integrase: The Next Target for Novel Anti-HIV Drug Development

Integrase (IN) is a retroviral enzyme that catalyzes the insertion of viral DNA (vDNA) into host chromosomal DNA, which is necessary for efficient viral replication. The crystal structure of prototype foamy virus IN bound to cognate vDNA ends, a complex referred to as the intasome, has recently been resolved. Structure analysis of the intasome revealed a tetramer structure of IN that was requir...

متن کامل

Design, Synthesis, Molecular Modeling Study and Biological Evaluation of New N'-arylidene-pyrido[2,3-d]pyrimidine-5-carbohydrazide Derivatives as Anti-HIV-1 Agents

In an attempt to identify potential new agents that are active against HIV-1, a series of novel pyridopyrimidine-5-carbohydrazide derivatives featuring a substituted benzylidene fragment were designed and synthesized based on the general pharmacophore of HIV-1 integrase inhibitors. The cytotoxicity profiles of these compounds showed no significant toxicity to human cells and they exhibited anti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2010